

Data do Evento: 04, 05 e 06/11/2024 TEMA:
Desafios e soluções
ambientais na
adequação aos
critérios ESG

REDUÇÃO DA CARGA POLUENTE DE EFLUENTES DE CURTUME COM BASE NO ESTUDO DE INSUMOS QUÍMICOS

Paulo Ricardo Uez – Universidade Feevale Éverton Hansen – Universidade do Vale do Rio dos Sinos Patrice Monteiro de Aquim – Universidade Feevale

INTRODUÇÃO

Os curtumes utilizam elevados volumes de água e produtos químicos (como corantes, taninos e óleos de engraxe), gerando efluentes com alta carga poluidora¹. Este estudo teve como objetivo otimizar o processo de pós-curtimento de curtume que produz couros para calçado, reduzindo de consumo 0 insumos partir do químicos, estudo a formulações, sem alterar a qualidade do produto final, visando uma redução da carga poluidora presente nos efluentes líquidos.

METODOLOGIA

Uma formulação de pós-curtimento foi otimizada, com foco na redução da oferta de recurtentes e óleos de engraxe (químicos com maior dosagem). Os couros recurtidos com as formulações original e otimizadas foram analisados em testes físico-mecânicos e organolépticos e

os banhos residuais foram avaliados para pH, condutividade, STD e DQO².

RESULTADOS E DISCUSSÃO

ETAPA	рН	Condutividade (mS/cm)	STD (mgL ⁻¹)	DQO (mg O ₂ L ⁻¹)
Formulação original – Escala industrial				
Neutralização e recurtimento catiônico	4,27	21,33	12.370,23	15.074,66
Recurtimento aniônico, tingimento e fixação	3,33	25,5	15.400,08	31.161,04
Fixação do Engraxe	2,98	6,52	3.470,04	54.127,13
Formulação C1 – Escala piloto				
Neutralização e recurtimento catiônico	4,31	21,26	12.320,84	12.293,49
Recurtimento aniônico, tingimento e fixação	3,29	19,77	11.360,46	19.789,89
Fixação do Engraxe	3,01	6,79	5.920,51	37.762,35
Formulação C2 – Escala piloto				
Neutralização e recurtimento catiônico Recurtimento aniônico, tingimento e	4,29	20,91	12.100,71	11.409,48
fixação	3,39	17,89	10.190,43	12.621,11
Fixação do Engraxe	2,92	7,67	4.120,61	30.048,15
Formulação C2 – Escala industrial				
Neutralização e recurtimento catiônico Recurtimento aniônico, tingimento e	4,35	14,02	7.820,00	12.989,79
fixação	3,67	17,19	9.769,00	13.328,00
Fixação do Engraxe	3,21	5,35	5.350,00	10.224,02

REFERÊNCIAS

No recurtimento aniônico (foco do trabalho, que reduziu principalmente recurtentes), houve redução de 32,6% na condutividade da formulação otimizada C2 (Escala industrial) em comparação com o mesmo banho residual da formulação original.

Para os STD, observa-se uma redução de 36,6% na formulação otimizada C2 (Escala industrial) comparando com a formulação original. Também é observada uma redução de 36,5% para a formulação C1 (Escala piloto) e de 59,5% para a formulação C2 (Escala piloto) nos valores do parâmetro DQO.

CONCLUSÃO

A redução na carga poluente do efluente bruto deve contribuir para que o curtume consiga atender continuamente a legislação ambiental. Os testes físico-mecânicos nos couros atenderam as normas aplicáveis.

¹ PENA *et al.* Estudo de um consórcio de microalgas na remoção de nutrientes de efluentes de curtume. **Revista Eletrônica Científica da UERGS**, [S.I.], v. 3, n. 4, p. 743-752, dez. 2017. ISSN 2448-0479.

² STANDARD METHODS 22°ed. SM 5220 B 2012.