

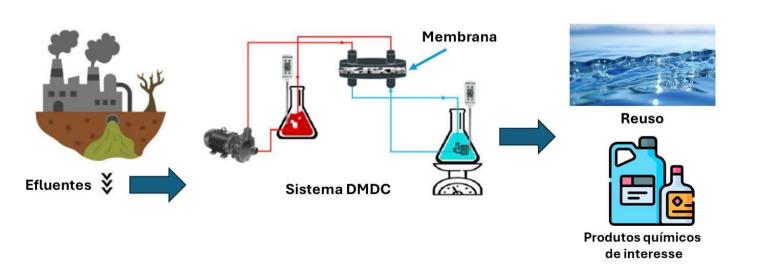
Data do Evento: 04, 05 e 06/11/2024 TEMA:
Desafios e soluções
ambientais na
adequação aos
critérios ESG

DESTILAÇÃO POR MEMBRANAS APLICADA AO TRATAMENTO DE ÁGUAS RESIDUAIS DA INDÚSTRIA QUÍMICA

¹AIMI, L. V.; ²SILVA, R. S.; ³PAULAZZI, A. R.; ⁴MARANGONI, C.; ⁵SELLIN, N.

^{1,5}Universidade da Região de Joinville – UNIVILLE, Programa de Pós-graduação em Engenharia de Processos (PPGEP); ^{2,3,4}Universidade Federal de Santa Catarina – UFSC, Programa de Pós-graduação em Engenharia Química (PósEng)

INTRODUÇÃO:


- ✓ O consumo irresponsável e a poluição de rios e mananciais são fatores relevantes na escassez de água doce disponível em todo o planeta. Apesar de contribuir para a economia, a indústria química requer elevados volumes de água e diversos produtos químicos na cadeia produtiva → gerando efluentes que podem conter substâncias tóxicas diversas e de difícil remoção por processos de tratamento convencionais.
- ✓ **Destilação por Membrana por Contato Direto** (DMCD) → tecnologia avançada de separação térmica. Uma solução aquosa é destilada através de uma membrana hidrofóbica porosa, causando alta rejeição dos componentes não voláteis da alimentação. Pode ser operada a temperaturas relativamente baixas, usando fontes térmicas como energia solar ou fluxos de calor residual do próprio processo industrial.
- ✓ Objetivo: tratar águas residuais de uma indústria que produz sais inorgânicos a base de iodo, cobalto e selênio por DMCD, visando a recuperação de substâncias de interesse e água para reuso industrial.

METODOLOGIA:

✓ Características da água residual da indústria química

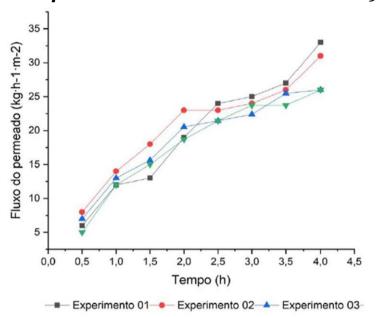
Parâmetro	Água Residual A	Água residual B	Água residual C
lodo (mg/L)	254	622	1006
Cobalto (mg/L)	23	<1	5,32
Nitrogênio (mg/L)	160	260	300
Surfactantes (mg/L)	0,73	10,40	20
Condutividade (µs/cm)	15230	34600	36000
SST (mg/L)	386	4680	8390

✓ Tratamento da água residual da indústria química

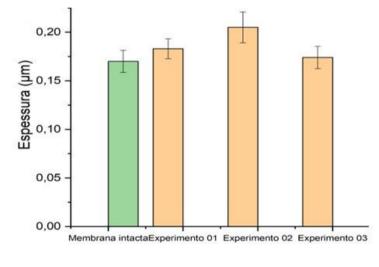
Membrana plana PTFE023001(Sterlitech Corporation)

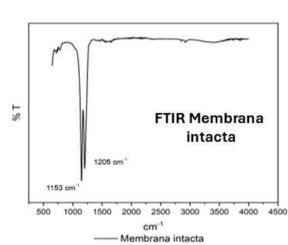
✓ Condições experimentais utilizadas

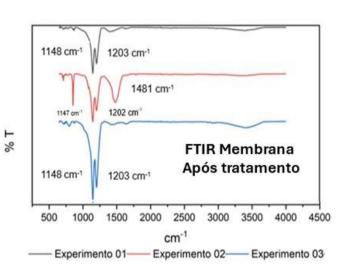
Água residual utilizada	Número do experimento
Água residual A	1
Água residual B	2
Água residual C	3


Parâmetro	Valor
Temperatura da alimentação (°C)	60,0
Temperatura de permeado (°C)	20,0
Vazão da alimentação (L/min)	1,50
Vazão do permeado (L/min)	0,70
Tempo de operação (horas)	4,00

Data do Evento: 04, 05 e 06/11/2024 TEMA:
Desafios e soluções
ambientais na
adequação aos
critérios ESG

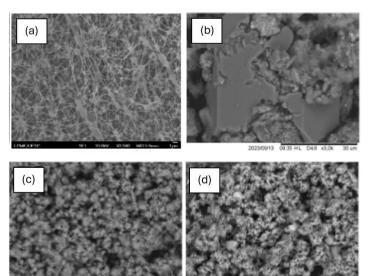

RESULTADOS E DISCUSSÃO:


√ Fluxo do permeado e Eficiência de remoção de contaminantes



	Eficiência de Remoção (%)		
Parâmetro/Experimento	1	2	3
lodo	90,0	65,7	94,8
Cobalto	95,4	*	81,2
Surfactantes	46,6	95,5	99,2
Nitrogênio	93,8	93,8	94,3
SST	100	97,2	97,7
Condutividade	99,9	99,9	99,9

✓ Caracterização das membranas antes e após tratamento



✓ Espessura média:

- Membrana intacta = 0,170 µm
- Membranas após tratamento = 0,1724 e 0,205 μm
- ✓ FTIR: picos em 1147 e 1203 cm⁻¹ → ligações carbono-flúor (membranas → estrutura química mantida. Demais picos são devido aos contaminantes.
- ✓ MEV: acúmulo de partículas (contaminantes) sobre a membrana após tratamento → não influenciou no fluxo de permeado, devido ao baixo tempo de processo (4 h).

CONCLUSÃO:

- A membrana de PTFE ocasionou **alta remoção dos contaminantes**, devido ao adequado diâmetro médio dos poros, alta porosidade volumétrica, alta hidrofobicidade, baixo grau de absorção de líquido e morfologia superficial uniforme.
- As águas residuais apresentaram diferentes desempenhos de fluxo de permeado ao longo do tempo, devido às diferentes concentrações de produtos químicos em cada uma delas.
- DMCD apresentou potencial para uso no tratamento do efluente da indústria química, com possibilidade de reuso da água tratada e recuperação de substâncias químicas de interesse.
- Necessidade de avanços na produção de membranas comerciais de baixo custo e na difusão da tecnologia.
- Alinhamento aos ODS:

