

Data do Evento: 04, 05 e 06/11/2024

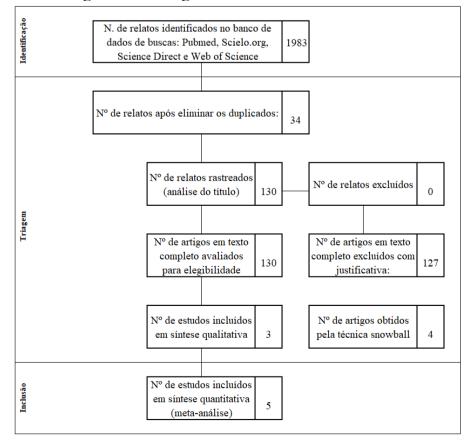
TEMA: Desafios e soluções ambientais na adequação aos critérios ESG

APLICAÇÃO DA LÓGICA *FUZZY* NA AVALIAÇÃO DE INDICADORES DE SAÚDE, SANEAMENTO E MEIO AMBIENTE: UMA REVISÃO SISTEMÁTICA

Karoline Borges - k257690@dac.unicamp.br Cassiana Maria Reganhan Coneglian - cassiana@unicamp.br Elaine Cristina Catapani Poletti – elainec@unicamp.br Universidade Estadual de Campinas - Unicamp, Faculdade de Tecnologias

1. INTRODUÇÃO

Soluções baseadas em regras *Fuzzy* têm sido amplamente utilizadas na análise e compreensão de problemas com verdades parciais, auxiliando na tomada de decisão ^[1]. Esse método tem uma aplicação relevante na modelagem de processos ambientais, devido à sua capacidade de lidar com múltiplas variáveis ^[2, 3].


A universalização do acesso aos serviços de saneamento básico é um objetivo global crucial, cuja falta ou ineficiência tem impactos profundos na saúde pública e no meio ambiente. No entanto, o monitoramento e a gestão eficazes dos indicadores sanitários, de saúde pública e ambientais representam desafios complexos, dada a necessidade de integração desses múltiplos aspectos [4]. Nesse contexto, a Lógica *Fuzzy* tem se destacado como uma ferramenta promissora para facilitar essa integração de forma mais precisa e eficiente.

O presente estudo realizou uma revisão sistemática da literatura com o objetivo de investigar a aplicação da Lógica *Fuzzy* na análise de indicadores sanitários, de saúde e ambientais, com foco na sistematização dos métodos e softwares utilizados.

2. METODOLOGIA

Para isso, a revisão seguiu as diretrizes PRISMA, com adaptações, e abrangeu estudos publicados entre 2019 e 2023 nas bases *PubMed* (30), *Scielo* (1), *Science Direct* (437) e *Web of Science* (1515), totalizando 1983 artigos (Figura 1).

Figura 1 - Fluxograma da Revisão Sistematizada

3. RESULTADOS E DISCUSSÕES

Os indicadores identificados na revisão sistemática da literatura (RSL) foram sistematizados de maneira concisa na Tabela 1.

Tabela 1 - Resumo dos principais indicadores identificados na RSL

Item	Autores	Quais indicadores de saúde pública?	Quais indicadores de saneamento?	Quais indicadores ambientais?	Outros indicadores?
1	St Flour et al. (2022)	Taxa de mortalidade por doenças respiratórias	Abastecimento de água, tratamento de esgoto e manejo de resíduos.	Consumo de recursos naturais não renováveis, consumo de energia renovavel, áreas verdes e de proteção ambiental.	NA
2	Godfrey et al. 2022	NA	Dados do WASH - Water (água), Sanitation (saneamento) e Hygiene (higiene)	NA	NA
3	Canavese et al. (2014)	Saúde: Média de mortalidade infantil e Taxas anuais de mortalidade para causas selecionadas	Cobertura de abastecimento de água, produção e tratamento de resíduos, coleta de resíduos e coleta e tratamento de esgoto.		
4	Canavese & Ortega (2013)	Taxa de mortalidade infantil, de mortalidade de 1 a 4 anos devido a infecções agudas do trato respiratório, de mortalidade por diarreia aguda para todas as idades	Cobertura de coleta de lixo, Cobertura de esgoto, Cobertura da rede de abastecimento de água	NA	NA
5	Roveda et al. (2010)	NA	Abastecimento público, coleta e tratamento de esgoto doméstico, coleta seletiva e coleta de resíduos sólidos urbanos.	Qualidade do ar urbano, preservação da vegetação e projetos de educação ambiental .	NA

A seleção dos indicadores em todos os estudos revisados foi realizada em colaboração com gestores públicos experientes e embasada em pesquisas bibliográficas, considerando as particularidades das áreas em análise.

No que se refere à aplicação da Lógica *Fuzzy*, observou-se que os métodos de inferência Mamdani e de defuzzificação pelo centroide são amplamente utilizados, sendo o software Matlab o mais frequentemente empregado. Os resultados obtidos com a modelagem *Fuzzy* foram apresentados de diversas formas, como tabelas, gráficos e mapas, o que facilitou a interpretação e visualização das análises realizadas.

4. CONSIDERAÇÕES FINAIS

Por fim, constata-se que a Lógica *Fuzzy* possui um grande potencial para apoiar análises governamentais e a tomada de decisões nos serviços de infraestrutura de saneamento e saúde, além de embasar a criação e reformulação de políticas públicas voltadas à saúde ambiental e à saúde pública.

Agradecimentos

Agradecemos a CAPES, a PPGT-Unicamp e a Unifesspa.

REFERÊNCIAS

- [1] ZADEH, L. A. Fuzzy sets. **Information and Control**, v. 8, n. 3, p. 338–353, 1965.
- [2] FENG, J. et al. Establishment of an indicator framework for global One Health Intrinsic Drivers index based on the grounded theory and fuzzy analytical hierarchy-entropy weight method. **Infectious Diseases of Poverty**, v. 11, n. 1, p. 121, 2022.
- [3] GODFREY, S. et al. Validation of the Sustainable Development Goal 6 Monitoring Structures across East and Southern Africa Using Fuzzy Logic Analysis. **Water**, v. 14, n. 19, p. 3065, 2022.
- [4] ST FLOUR, P. O.; BOKHOREE, C. A fuzzy based sustainability assessment tool for small island states. Current Research in Environmental Sustainability, v. 4, p. 100123, 2022.