Data do Evento: 04, 05 e 06/11/2024 TEMA:
Desafios e soluções
ambientais na
adequação aos
critérios ESG

ANÁLISE DO REUSO DE EFLUENTE DE GALVANOPLASTIA: ESTUDO DE CASO

Luana Oliveira de Carvalho – <u>luana.oliveira 14@hotmail.com</u> Nádia Teresinha Schröder – <u>nadia.schroder@gmail.com</u> Renata Farias Oliveira – <u>renata@rebambiental.com.br</u>

TRODUÇÃO OBJETIVO

ETODOLOGIA

O reuso de efluentes pode causar melhorias significativa nas indústrias, além de trazer benefícios ambientais, econômico e sociais. Nesse contexto, ele se apresenta como importante estratégia na gestão da demanda de água em atividades industriais, pois o efluente gerado em uma etapa do processo produtivo pode ser utilizado em outra, substituindo, portanto, a água. A partir do exposto, este estudo teve como objetivo avaliar o reuso dos efluentes oriundos do tratamento de superfície de uma empresa privada do ramo galvânico, localiza-se no município do Rio Grande do Sul, com vistas a redução de custo devido ao uso racional da água.

Trata-se de um estudo de caso, com caracterização quali-quantativa do efluente. Foi realizado o levantamento em documentos, com o apoio do operador da estação de tratamento e coleta de dados. A partir deles foi possível realizar o comparativo de volume de efluente reusado, analisando a viabilidade econômica de aplicar o reuso em indústria. Desta forma o trabalho foi divido em 5 etapas:

Etapa 4

Filtro prensa

Pergolado

Lodo seco

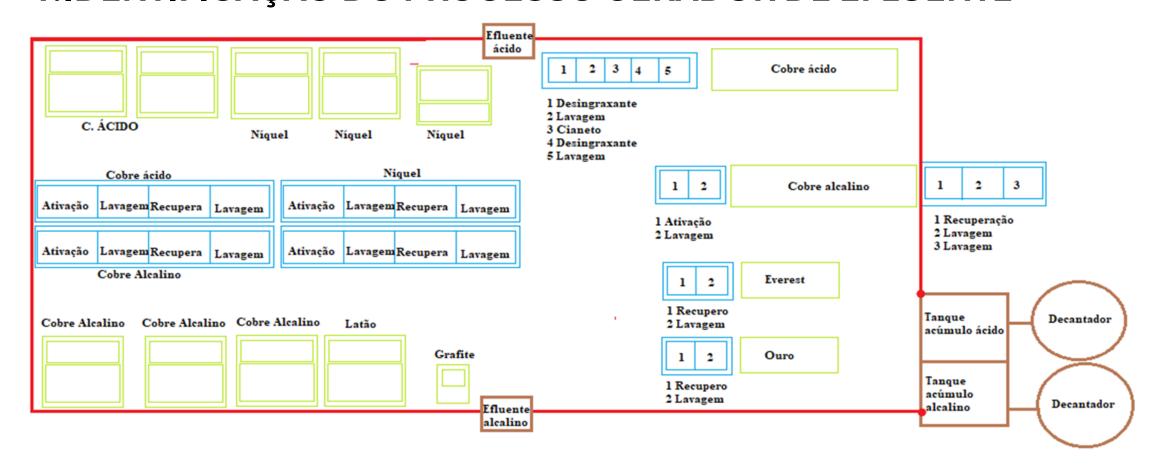
Etapa 1 Identificação do setor responsável pela geração do efluente;

Avaliação da qualidade do efluente de reuso;

Etapa 3 Descrição do tratamento aplicado;

Avaliação da quantidade de efluente tratado;

Etapa 5 Análise econômico-financeira.


no piso da galvânica

RESULTADOS e DISCUSSÃO

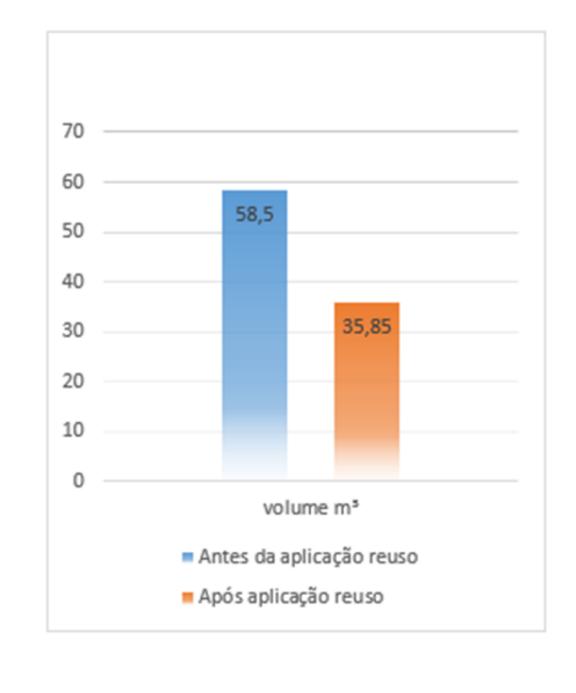
0

CRIÇÃO

1.IDENTIFICAÇÃO DO PROCESSO GERADOR DE EFLUENTE

2. AVALIAÇÃO DA QUALIDADE DO EFLUENTE DE REUSO

Parâmetro	Resultado	Unidade	Limite de emissão
VOC's	<5	mg/L	Ausente
Aparência	Não desagradável		Não desagradáveis
Cor aparente	<10	mg Pt-Co/L	< ou =10 UH
DBO5	25	mg/L O2	< ou =10 mg/L
Fosforo Total	0,1	mg/L P	< ou = 0,1 mg/L
Nitrato	1,2	mg/L N	<10 mg/L
Nitrito	0,01	mg/L N	<ou 1="" =="" l<="" mg="" th=""></ou>
Nitrogênio Amoniacal	<5,0	mg/L N	< ou = 20 mg/L
Odor	Não desagradáveis		Não desagradáveis
Óleos e Graxas Totais	1	mg/L	<ou 1="" =="" l<="" mg="" th=""></ou>
рН	8		Entre 6,0 e 9
Sólidos Dissolvido Totais	70	mg/L	< ou = 500 mg/L
Sólidos Suspensos Totais	<8,0	mg/L	< ou = 5 mg/L
Parâmetro	Resultado	Unidade	Limite de emissão pela
Escherichia coli	<1,8 x 10	NMP/100mL	< 500 NMP / 100 mL
Turbidez	1,74	NTU	10 UT


Efluente Bruto Efluente da regeneração de resinas troca iónica alcalina 4. AVALIAÇÃO DA QUANTIDADE DO EFLUENTE TRATADO Decantador 3 m³ Mês tratamento Volume m³ Janeiro 8 m³ Janeiro 8 m³ Fevereiro 12 m³ Março 4 m³

Filtro carvão ativado

REUSO

Mês tratamento	Volume m³
Janeiro	8 m³
Fevereiro	12 m³
Março	4 m³
Abril	8m³
Maio	12m³
Junho	8 m³
Julho	8 m³
Agosto	8m³
Setembro	12 m³

5. ANÁLISE ECONÔMICO-FINANCEIRA

Quanto ao aspecto econômico, a implantação do reuso trouxe uma redução financeira em torno de 37,9%. O consumo em m³ reduziu em 38,70%. A média dessa redução, em valores em reais, passou de R\$ 431,36 para R\$ 267,49.

Conclui-se, portanto, que foi viável tanto na redução de custo, quanto o enquadramento do efluente tratado as legislações sob reuso, a implantação do sistema na indústria foi efetivo, vale destacar que a porcentagem de reuso é de significativa importância pois ajuda no combate a crise hídrica, extinguindo o uso de água potável para vasos sanitário.